US 7,731,670 B2

9

cients, B,%. Assist can be achieved by making each of the
virtual masses m,,“ smaller than its real counterpart in m,,. The
effect perceived by the user would be the limb weighing less
and showing less inertia. Similarly, a virtual reduction in the
damping of the joints can be expected to have an assistive
effect on the user.

FIG. 12 illustrates, in schematic form, one way in which
the controller for the multi-DOF exoskeleton produces the
virtual modification in the properties of the human limb. The
natural dynamics of the human limb are represented by the
following equation:

(16)

In the above equation, vector q is a set of n generalized
coordinates (typically joint angles) representing the configu-
ration of the limb in joint space. [, (m,,.q) is the inertia matrix
of the limb, C,(q,q) represents the centrifugal and Coriolis
terms, and G,,(m,,.q) represents the gravitational forces acting
on the limb. B, is the damping matrix of the limb, and the
vector T, represents the net muscle torques acting on the
limb’s joints. The effect of the exoskeleton is replacing the

limb’s natural dynamics by a set of virtual dynamic terms
denoted by the superscript d in block (a) of FIG. 12:

LAGHC 4B, g+ G o=,

L (my, )G+ [C (3,4, G+ Brf 4+ Gr(m )=,

an
where

LA=L(m ) (18)

Chd:Ch(mhdxq) (19)

Ghd: Gh(mhdxq) (20)

One way to produce the virtual impedance of the limb is
through the interaction forces I, (in Cartesian space) between
the exoskeleton and the human limb. These forces modify
Equation 16 as shown in block (b) of FIG. 12.

Ly(mp, )4 +[Cr(my,,q,§ )+ B, ] 4+G 4 (my, )=, *+‘]hTFp (21)

In this equation, J,” is the Jacobian matrix of the human
limb. The Jacobian matrix relates the Cartesian velocities X of
the points where the forces F, are applied, to the limb joints’
angular velocities ¢. The last term in the above equation can
be replaced by a vector of equivalent torques T, in joint space:

—71. T3
= 'F,

22

These torques can be measured directly, for instance, by
installing torque sensors at the joints. Combining Equations
17,21, and 22 yields the following equation (with some mass

and state terms removed for clarity):

(Ihd—lh)‘i"'[(chd— Ch)+(Bhd_Bh)]q+(Ghd_ G,)g=-7, (23)

This equation can be expressed in compact form by defin-
ing

I ed =l hd_l i Ced = Chd_ Cp B ed:B hd_B i Ged = Ghd_ Gy, (24)

We refer to the above terms as the virtual dynamics of the
exoskeleton. Thus,

LAGHCA+B A4+ G A=, 25

As expected, the virtual dynamics of the exoskeleton are
those of an active system. For the particular case of a virtual
damping matrix B,? composed of constant terms, the virtual
dynamics of the exoskeleton will be active if B,? is proven to
be negative definite.

Equation 25, shown also in block (d) of FIG. 12, represents
the basic control law for the exoskeleton. As in the case of the
1-DOF exoskeleton, one embodiment of this control law is an
impedance controller. In such an impedance controller, given
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the interaction torque -7, as input, the exoskeleton enforces
the kinematic trajectory represented by g, q and q.

Equation 25 does not represent the real dynamics of the
exoskeleton. These are represented instead by the equation in
block (¢) of FIG. 12:

L(mo@)§+[Come.q.)+B.J4+G (M q)=T.~,

In the above equation, I (m,,q) is the inertia matrix of the
exoskeleton, C,(q,q) represents the centrifugal and Coriolis
terms, and G,,(m,,,q) represents the gravitational forces acting
on the exoskeleton. B, is the damping matrix of the exoskel-
eton. Vector T, represents the actuators’ torques. The control-
ler’s task is to replace these dynamics with those from Equa-
tion 25. This normally involves the use of state and/or force
feedback.

5. Implementation of a Multi-DOF Assistive Controller
Based on Active Impedance

One consideration in implementing a control architecture
for a multi-DOF exoskeleton is the linearization of the exosk-
eleton plant, that is, making the dynamic properties of the
exoskeleton independent of the inputs to the system. As
shown below, linearization can be accomplished through the
use of a model of the dynamics of the physical exoskeleton.

FIG. 13 illustrates a diagram of the control architecture for
the multi-DOF exoskeleton, in one embodiment. The exosk-
eleton’s control comprises three main stages, each of which
has its own feedback loop. The first stage is the active imped-
ance element based on the virtual exoskeleton impedance.
This element represents the desired dynamic behavior of the
exoskeleton. The output of the active impedance element is a
reference kinematic trajectory (comprising angular position,
angular velocity, and/or angular acceleration) for each of the
exoskeleton’s actuators. The second stage is the trajectory-
tracking controller. This component has the function of issu-
ing the basic control commands necessary for the actuators to
follow the reference trajectory. This control block can contain
a proportional (P) or proportional-derivative (PD) controller.
The third stage is the linearizing (model-based) controller. In
the case of a multi-DOF exoskeleton, gravity and coupling
between the links are sources of nonlinear dynamics that
make the trajectory-tracking control insufficient. This prob-
lem is solved by adding a linearizing control that effectively
makes the exoskeleton behave as a linear plant. This control
stage combines a model of the exoskeleton’s true dynamics
with kinematic feedback (typically position and velocity)
from the physical exoskeleton.

The controller illustrated in FIG. 13 is designed to perform
the task outlined in FIG. 12. In one embodiment, the first
control stage comprises an active impedance element based
on equation 25. This element receives the measured interac-
tion torque —,, and generates a reference acceleration trajec-
tory §,. Successive integrations of this term generate a refer-
ence velocity ¢, and a reference position q,..

The second stage is the trajectory-tracking controller
(outer-loop control), for example a PD controller that applies
the control law

26)

a.=G+Kpé,+Kpe, @7
where &, and e, are, respectively, the velocity error and the
position error. K, and K, are scalar gain matrices. ., is the
commanded acceleration input to the exoskeleton.

The third stage is a model-based controller that translates
the commanded acceleration into torque commands T, for the
actuators. Linearization of the exoskeleton also takes place at
this stage. On the basis of Equation 26, the control law for the
third stage is given by

=L G+ [C oo 0.9)+B.J3+ G (m00) @8)

The terms 1,(q), C.(q.9), B, and G.(q) constitute the model
of the exoskeleton’s real dynamics. Provided that the model



